Lattice Boltzmann simulations of liquid crystal hydrodynamics
نویسندگان
چکیده
منابع مشابه
Lattice Boltzmann simulations of liquid crystal hydrodynamics.
We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are non-Newtonian flow properties such as shear thinning an...
متن کاملLattice Boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics.
We describe a lattice Boltzmann algorithm to simulate liquid-crystal hydrodynamics in three dimensions. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic effects such as shear-...
متن کاملLattice Boltzmann simulations of anisotropic particles at liquid interfaces
Complex colloidal fluids, such as emulsions stabilized by particles with complex shapes, play an important role in many industrial applications. However, understanding their physics requires a study at sufficiently large length scales while still resolving the microscopic structure of a large number of particles and of the local hydrodynamics. Due to its high degree of locality, the lattice Bol...
متن کاملLattice Boltzmann method for simulations of liquid-vapor thermal flows.
We present a lattice Boltzmann method that has the capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this method, the liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated.
متن کاملFast lattice Boltzmann solver for relativistic hydrodynamics.
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2001
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.63.056702